BSMPT 3.0.7
BSMPT - Beyond the Standard Model Phase Transitions : A C++ package for the computation of the EWPT in BSM models
Loading...
Searching...
No Matches
cvspline Class Reference

Constructs a spline \( s(l) \) with constant velocity, i.e. \( \frac{ds(l)}{dl} \equiv 1\). \( l \) acts as the length alongisde the spline. It works by using tk::spline to construct a cubic spline which depends on another arbitrary parameter \( x \) and then construct an additional spline to convert from \( x \to l \equiv l(x) \). More...

#include <BSMPT/utility/const_velocity_spline.h>

Public Member Functions

 cvspline ()
 Default constructor.
 
 cvspline (const std::vector< std::vector< double > > &phipath_in)
 Construct a new cvspline object.
 
 cvspline (const std::vector< std::vector< double > > &phipath_in, int input_num_inter)
 Construct a new cvspline object.
 
void initialize ()
 initialize the constant velocity spline using the given path
 
void add_point (const double &p, const std::vector< double > &new_vev, const bool &compile=true)
 introduce a new point on the knot list
 
std::vector< double > deriv (int order, double x)
 derivative of the constant velocity spline in \( x \)
 
std::vector< double > dl (double l)
 first derivative of the constant velocity spline in \( l \)
 
std::vector< double > d2l (double l)
 second derivative of the constant velocity spline in \( l \)
 
std::vector< double > operator() (double l) const
 value of the constant velocity spline at \( l \)
 
void print_path () const
 print the current knots of the spline
 
void save_path (const std::string &file_name, const bool &header=true)
 save the knots of the splien into a file
 

Public Attributes

int dim
 Dimension of the VEV space.
 
int num_points
 Number of points in the path (knots)
 
int num_inter
 Number of point from x to l (and viceversa)
 
tk::spline x_to_l
 Spline to convert from linear length to spline length.
 
tk::spline l_to_x
 Spline to convert from spline length to linear length.
 
float linL
 Linear length of the (spline) path.
 
float L
 True length of the (spline) path.
 
std::vector< double > lin_lengths
 We need a parameter, so I used the linear lengths (not the path spline length) as parameter, this is not optimal as the velocity will not be 1.
 
std::vector< double > vev_position
 Position of the VEV list "lin_lengths" using spline length.
 
std::vector< tk::splinesplines
 Vector of each 2D splines (x = linear length (not important, must be increasing), y = vev_i)
 
std::vector< std::vector< double > > transposed_phi
 Transpose of the path given, easier for calculations.
 
std::vector< std::vector< double > > phipath
 // List of VEVs paths
 

Private Member Functions

double lin_abs_deriv (double x)
 derivative in \( x \)
 
double Simpson_step (double t0, double t1)
 Integrates from \( t_0 \) to \( t_1 \) using a single Simposons' 3/8 integration step.
 

Private Attributes

std::vector< double > list_x
 List of x for linear lengths division.
 
std::vector< double > list_l
 // List of l for spline lengths division
 

Detailed Description

Constructs a spline \( s(l) \) with constant velocity, i.e. \( \frac{ds(l)}{dl} \equiv 1\). \( l \) acts as the length alongisde the spline. It works by using tk::spline to construct a cubic spline which depends on another arbitrary parameter \( x \) and then construct an additional spline to convert from \( x \to l \equiv l(x) \).

Constructor & Destructor Documentation

◆ cvspline() [1/2]

cvspline::cvspline ( const std::vector< std::vector< double > > &  phipath_in)

Construct a new cvspline object.

Parameters
phipath_inknots of the path

◆ cvspline() [2/2]

cvspline::cvspline ( const std::vector< std::vector< double > > &  phipath_in,
int  input_num_inter 
)

Construct a new cvspline object.

Parameters
phipath_inknots of the path
input_num_internumber of interpolations between \( x \) and \( l \)

Member Function Documentation

◆ add_point()

void cvspline::add_point ( const double &  p,
const std::vector< double > &  new_vev,
const bool &  compile = true 
)

introduce a new point on the knot list

Parameters
pparameter of the point
new_vevvalue of the knot
compileinitialize after point is added?

◆ d2l()

std::vector< double > cvspline::d2l ( double  l)

second derivative of the constant velocity spline in \( l \)

Parameters
lwhere to calculate the derivative
Returns
std::vector<double> result

◆ deriv()

std::vector< double > cvspline::deriv ( int  order,
double  x 
)

derivative of the constant velocity spline in \( x \)

Parameters
orderorder of the derivative
xwhere to calculate the derivative
Returns
std::vector<double> result

◆ dl()

std::vector< double > cvspline::dl ( double  l)

first derivative of the constant velocity spline in \( l \)

Parameters
lwhere to calculate the derivative
Returns
std::vector<double> result

◆ lin_abs_deriv()

double cvspline::lin_abs_deriv ( double  x)
private

derivative in \( x \)

Parameters
x
Returns
double

◆ operator()()

std::vector< double > cvspline::operator() ( double  l) const

value of the constant velocity spline at \( l \)

Parameters
l
Returns
std::vector<double>

◆ save_path()

void cvspline::save_path ( const std::string &  file_name,
const bool &  header = true 
)

save the knots of the splien into a file

Parameters
file_namename of the file
headerprint the names of the VEVs in the first column?

◆ Simpson_step()

double cvspline::Simpson_step ( double  t0,
double  t1 
)
private

Integrates from \( t_0 \) to \( t_1 \) using a single Simposons' 3/8 integration step.

Parameters
t0lower limit
t1upper limit
Returns
double value of the integral

The documentation for this class was generated from the following files: