|
| GravitationalWave (BounceSolution &BACalc, const TransitionTemperature &which_transition_temp=TransitionTemperature::Percolation) |
|
double | CalcEpsTurb (double epsturb_in) |
| CalcEpsTurb calculate epsilon for turbulence contribution.
|
|
void | CalcPeakCollision () |
| Calculate peak amplitude and frequency for GW signal from collision.
|
|
double | CalculateXiShell () |
| Calcualte the fluid shell thickness \( \xi_\text{front} -
\xi_\text{rear} \).
|
|
void | CalcPeakSoundWave () |
| Calculate peak amplitude and frequency for GW signal from sound waves.
|
|
void | CalcPeakTurbulence () |
| Calculate peak amplitude and frequency for GW signal from turbulence.
|
|
double | BPL (const double &f, const BPLParameters &par) const |
| Broken power law spectrum \(
\Omega_{\mathrm{GW}}^{\mathrm{BPL}}\left(f,
\vec{\theta}_{\mathrm{Cosmo}}\right)=\Omega_b\left(\frac{f}{f_b}\right)^{n_1}\left[\frac{1}{2}+\frac{1}{2}\left(\frac{f}{f_b}\right)^{a_1}\right]^{\frac{n_2-n_1}{a_1}}
\).
|
|
double | DBPL (const double &f, const DBPLParameters &par) const |
| Double broken power law spectrum \(
2^\frac{n_2-n_3}{a_2}\left(1+\left(\frac{f_2}{f_1}\right)^{a_1}\right)^{\frac{n_1-n_2}{a_1}}\left(\frac{f}{f_2}\right)^{n_1}\left(1+\left(\frac{f}{f_1}\right)^{a_1}\right)^{\frac{n_2-n_1}{a_1}}\left(1+\left(\frac{f}{f_2}\right)^{a_2}\right)^{\frac{n_3-n_2}{a_2}}
\).
|
|
double | CalcGWAmplitude (double f) |
| Amplitude of GW signal as a function of.
|
|
double | GetSNR (const double fmin, const double fmax, const double T=3) |
| GetSNR.
|
|
|
GravitationalWaveData | data |
|
const double | AbsErr = 0 |
| AbsErr absolute error for numerical integration.
|
|
const double | RelErr = 1e-6 |
| RelErr relative error for numerical integration.
|
|
double | h = 0.674 |
| reduced Hubble constant
|
|
|
double | snr_integrand (double freq, void *params) |
| snr_integrand friend to define inner integrand of SNR integral
|
|
◆ BPL()
double BSMPT::GravitationalWave::BPL |
( |
const double & |
f, |
|
|
const BPLParameters & |
par |
|
) |
| const |
Broken power law spectrum \(
\Omega_{\mathrm{GW}}^{\mathrm{BPL}}\left(f,
\vec{\theta}_{\mathrm{Cosmo}}\right)=\Omega_b\left(\frac{f}{f_b}\right)^{n_1}\left[\frac{1}{2}+\frac{1}{2}\left(\frac{f}{f_b}\right)^{a_1}\right]^{\frac{n_2-n_1}{a_1}}
\).
- Parameters
-
f | frequency |
par | spectrum parameters |
- Returns
- double amplitude at that frequency
◆ CalcEpsTurb()
double BSMPT::GravitationalWave::CalcEpsTurb |
( |
double |
epsturb_in | ) |
|
CalcEpsTurb calculate epsilon for turbulence contribution.
- Parameters
-
epsturb_in | is the input value for epsturb. If [0..1] set to value, for -1 we use the upper bound sqrt(1 - Upsilon) |
- Returns
- value for epsturb
◆ CalcGWAmplitude()
double BSMPT::GravitationalWave::CalcGWAmplitude |
( |
double |
f | ) |
|
Amplitude of GW signal as a function of.
- Parameters
-
- Returns
- h2OmegaGW
◆ CalculateXiShell()
double BSMPT::GravitationalWave::CalculateXiShell |
( |
| ) |
|
Calcualte the fluid shell thickness \( \xi_\text{front} -
\xi_\text{rear} \).
- Returns
- double
◆ DBPL()
double BSMPT::GravitationalWave::DBPL |
( |
const double & |
f, |
|
|
const DBPLParameters & |
par |
|
) |
| const |
Double broken power law spectrum \(
2^\frac{n_2-n_3}{a_2}\left(1+\left(\frac{f_2}{f_1}\right)^{a_1}\right)^{\frac{n_1-n_2}{a_1}}\left(\frac{f}{f_2}\right)^{n_1}\left(1+\left(\frac{f}{f_1}\right)^{a_1}\right)^{\frac{n_2-n_1}{a_1}}\left(1+\left(\frac{f}{f_2}\right)^{a_2}\right)^{\frac{n_3-n_2}{a_2}}
\).
- Parameters
-
f | frequency |
par | spectrum parameters |
- Returns
- double amplitude at that frequency
◆ GetSNR()
double BSMPT::GravitationalWave::GetSNR |
( |
const double |
fmin, |
|
|
const double |
fmax, |
|
|
const double |
T = 3 |
|
) |
| |
GetSNR.
- Parameters
-
fmin | minimal frequency |
fmax | maximal frequency |
T | duration of exp. data acquisition, default value: 3 years |
- Returns
- signal-to-noise (SNR) ratio at LISA
The documentation for this class was generated from the following files:
- include/BSMPT/gravitational_waves/gw.h
- src/gravitational_waves/gw.cpp