BSMPT 3.0.7
BSMPT - Beyond the Standard Model Phase Transitions : A C++ package for the computation of the EWPT in BSM models
Loading...
Searching...
No Matches
KtildeInterpolation.h
Go to the documentation of this file.
1// Copyright (C) 2020 Philipp Basler, Margarete Mühlleitner and Jonas Müller
2// SPDX-FileCopyrightText: 2021 Philipp Basler, Margarete Mühlleitner and Jonas Müller
3//
4// SPDX-License-Identifier: GPL-3.0-or-later
5
6#ifndef SRC_BARYO_CALCULATION_KFACTORS_GRID_KtildeInterpolation_H_
7#define SRC_BARYO_CALCULATION_KFACTORS_GRID_KtildeInterpolation_H_
8
14#include <vector>
15
16namespace BSMPT
17{
18namespace Kfactors
19{
20namespace Data
21{
22
27const std::size_t KtildeInterpolationSize = 401;
32const std::vector<double> msquaredTsquared{
33 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
34 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
35 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
36 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
37 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
38 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
39 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
40 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
41 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
42 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
43 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
44 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
45 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,
46 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209,
47 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
48 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
49 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
50 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269,
51 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284,
52 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
53 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314,
54 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329,
55 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344,
56 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,
57 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374,
58 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389,
59 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400};
64const std::vector<double> KtildeNormBoson_grid{
65 30.211, 22.3434, 18.2769, 15.4094, 13.2236,
66 11.4873, 10.071, 8.89376, 7.90116, 7.05479,
67 6.32644, 5.69483, 5.14351, 4.65952, 4.23254,
68 3.85418, 3.51757, 3.21704, 2.94785, 2.70602,
69 2.48817, 2.29144, 2.11336, 1.95182, 1.80498,
70 1.67124, 1.54924, 1.43773, 1.33568, 1.24212,
71 1.15623, 1.07728, 1.00461, 0.937646, 0.875858,
72 0.818786, 0.766013, 0.717165, 0.671906, 0.629932,
73 0.590969, 0.554769, 0.521107, 0.48978, 0.460604,
74 0.433408, 0.408041, 0.384363, 0.362245, 0.34157,
75 0.322233, 0.304135, 0.287187, 0.271305, 0.256414,
76 0.242444, 0.229331, 0.217017, 0.205445, 0.194567,
77 0.184334, 0.174705, 0.16564, 0.1571, 0.149053,
78 0.141467, 0.134312, 0.12756, 0.121187, 0.115169,
79 0.109483, 0.10411, 0.09903, 0.0942253, 0.0896794,
80 0.0853769, 0.0813033, 0.0774451, 0.0737896, 0.0703252,
81 0.0670407, 0.0639258, 0.0609709, 0.0581667, 0.055505,
82 0.0529776, 0.0505772, 0.0482966, 0.0461292, 0.044069,
83 0.04211, 0.0402468, 0.0384742, 0.0367875, 0.0351819,
84 0.0336533, 0.0321976, 0.0308109, 0.0294897, 0.0282306,
85 0.0270304, 0.0258861, 0.0247948, 0.0237539, 0.0227607,
86 0.0218129, 0.0209083, 0.0200447, 0.01922, 0.0184323,
87 0.0176799, 0.016961, 0.0162739, 0.0156172, 0.0149894,
88 0.0143891, 0.0138149, 0.0132657, 0.0127402, 0.0122374,
89 0.0117562, 0.0112955, 0.0108545, 0.0104322, 0.0100277,
90 0.00964021, 0.00926901, 0.00891331, 0.00857243, 0.00824568,
91 0.00793243, 0.00763209, 0.00734406, 0.00706781, 0.00680281,
92 0.00654858, 0.00630462, 0.0060705, 0.00584578, 0.00563006,
93 0.00542295, 0.00522408, 0.00503308, 0.00484963, 0.00467341,
94 0.00450409, 0.0043414, 0.00418506, 0.00403479, 0.00389034,
95 0.00375146, 0.00361794, 0.00348953, 0.00336604, 0.00324726,
96 0.00313299, 0.00302306, 0.00291728, 0.00281548, 0.00271751,
97 0.00262321, 0.00253242, 0.00244502, 0.00236086, 0.00227982,
98 0.00220177, 0.00212659, 0.00205416, 0.00198439, 0.00191717,
99 0.00185239, 0.00178996, 0.00172978, 0.00167178, 0.00161587,
100 0.00156196, 0.00150999, 0.00145986, 0.00141153, 0.0013649,
101 0.00131993, 0.00127655, 0.00123469, 0.00119431, 0.00115534,
102 0.00111773, 0.00108143, 0.0010464, 0.00101258, 0.000979927,
103 0.000948403, 0.000917965, 0.000888571, 0.000860184, 0.000832767,
104 0.000806284, 0.000780701, 0.000755987, 0.000732108, 0.000709035,
105 0.000686739, 0.000665192, 0.000644367, 0.000624239, 0.000604781,
106 0.000585972, 0.000567786, 0.000550203, 0.000533201, 0.00051676,
107 0.000500859, 0.00048548, 0.000470605, 0.000456216, 0.000442296,
108 0.000428829, 0.000415798, 0.00040319, 0.000390989, 0.000379182,
109 0.000367754, 0.000356693, 0.000345987, 0.000335622, 0.000325589,
110 0.000315874, 0.000306468, 0.000297361, 0.000288541, 0.00028,
111 0.000271727, 0.000263715, 0.000255954, 0.000248435, 0.000241152,
112 0.000234096, 0.000227259, 0.000220634, 0.000214215, 0.000207994,
113 0.000201965, 0.000196122, 0.000190458, 0.000184969, 0.000179647,
114 0.000174487, 0.000169486, 0.000164636, 0.000159934, 0.000155374,
115 0.000150952, 0.000146664, 0.000142505, 0.000138471, 0.000134558,
116 0.000130763, 0.000127081, 0.000123509, 0.000120044, 0.000116681,
117 0.000113419, 0.000110253, 0.000107181, 0.000104199, 0.000101306,
118 9.84975e-05, 9.57716e-05, 9.31256e-05, 9.05571e-05, 8.80636e-05,
119 8.56428e-05, 8.32925e-05, 8.10105e-05, 7.87947e-05, 7.66431e-05,
120 7.45536e-05, 7.25245e-05, 7.05538e-05, 6.86398e-05, 6.67807e-05,
121 6.49749e-05, 6.32207e-05, 6.15167e-05, 5.98612e-05, 5.82529e-05,
122 5.66902e-05, 5.51719e-05, 5.36966e-05, 5.2263e-05, 5.08699e-05,
123 4.9516e-05, 4.82002e-05, 4.69214e-05, 4.56784e-05, 4.44702e-05,
124 4.32958e-05, 4.21541e-05, 4.10443e-05, 3.99653e-05, 3.89162e-05,
125 3.78963e-05, 3.69046e-05, 3.59403e-05, 3.50026e-05, 3.40907e-05,
126 3.32039e-05, 3.23415e-05, 3.15027e-05, 3.06868e-05, 2.98933e-05,
127 2.91214e-05, 2.83706e-05, 2.76401e-05, 2.69296e-05, 2.62382e-05,
128 2.55657e-05, 2.49112e-05, 2.42745e-05, 2.36549e-05, 2.3052e-05,
129 2.24653e-05, 2.18944e-05, 2.13387e-05, 2.07979e-05, 2.02716e-05,
130 1.97593e-05, 1.92606e-05, 1.87752e-05, 1.83027e-05, 1.78427e-05,
131 1.73949e-05, 1.6959e-05, 1.65345e-05, 1.61213e-05, 1.57189e-05,
132 1.53271e-05, 1.49456e-05, 1.45741e-05, 1.42123e-05, 1.38599e-05,
133 1.35168e-05, 1.31826e-05, 1.28571e-05, 1.25401e-05, 1.22313e-05,
134 1.19305e-05, 1.16374e-05, 1.1352e-05, 1.10739e-05, 1.0803e-05,
135 1.05391e-05, 1.02819e-05, 1.00314e-05, 9.78723e-06, 9.54934e-06,
136 9.31754e-06, 9.09166e-06, 8.87153e-06, 8.65701e-06, 8.44794e-06,
137 8.24419e-06, 8.04559e-06, 7.85203e-06, 7.66336e-06, 7.47946e-06,
138 7.3002e-06, 7.12545e-06, 6.9551e-06, 6.78902e-06, 6.62712e-06,
139 6.46927e-06, 6.31537e-06, 6.16532e-06, 6.01901e-06, 5.87635e-06,
140 5.73724e-06, 5.60159e-06, 5.46931e-06, 5.34031e-06, 5.2145e-06,
141 5.09181e-06, 4.97214e-06, 4.85543e-06, 4.7416e-06, 4.63057e-06,
142 4.52227e-06, 4.41662e-06, 4.31357e-06, 4.21304e-06, 4.11497e-06,
143 4.01929e-06, 3.92595e-06, 3.83488e-06, 3.74603e-06, 3.65934e-06,
144 3.57476e-06, 3.49222e-06, 3.41169e-06, 3.3331e-06, 3.25641e-06,
145 3.18157e-06};
150const std::vector<double> KtildeNormFermion_grid{
151 22.6582, 19.0375, 16.3016, 14.1235, 12.3442,
152 10.8653, 9.61978, 8.55984, 7.65001, 6.86329,
153 6.1787, 5.57968, 5.05294, 4.58773, 4.17521,
154 3.80809, 3.48031, 3.18674, 2.92309, 2.68569,
155 2.47141, 2.27757, 2.10183, 1.9422, 1.79693,
156 1.66449, 1.54355, 1.43293, 1.33161, 1.23866,
157 1.15329, 1.07478, 1.00247, 0.93581, 0.874282,
158 0.81743, 0.764845, 0.716157, 0.671034, 0.629176,
159 0.590313, 0.554199, 0.520611, 0.489348, 0.460226,
160 0.433078, 0.407752, 0.384109, 0.362022, 0.341375,
161 0.322062, 0.303984, 0.287053, 0.271187, 0.25631,
162 0.242352, 0.22925, 0.216945, 0.205381, 0.19451,
163 0.184284, 0.17466, 0.1656, 0.157065, 0.149022,
164 0.141439, 0.134287, 0.127538, 0.121167, 0.115151,
165 0.109467, 0.104096, 0.0990169, 0.0942136, 0.0896689,
166 0.0853674, 0.0812947, 0.0774374, 0.0737827, 0.070319,
167 0.0670351, 0.0639207, 0.0609663, 0.0581626, 0.0555013,
168 0.0529742, 0.0505741, 0.0482938, 0.0461267, 0.0440667,
169 0.0421079, 0.0402449, 0.0384725, 0.0367859, 0.0351805,
170 0.033652, 0.0321964, 0.0308099, 0.0294888, 0.0282298,
171 0.0270296, 0.0258854, 0.0247941, 0.0237532, 0.0227601,
172 0.0218124, 0.0209078, 0.0200442, 0.0192196, 0.018432,
173 0.0176796, 0.0169607, 0.0162737, 0.015617, 0.0149892,
174 0.0143888, 0.0138147, 0.0132655, 0.0127401, 0.0122373,
175 0.011756, 0.0112954, 0.0108544, 0.010432, 0.0100276,
176 0.00964012, 0.00926893, 0.00891324, 0.00857236, 0.00824561,
177 0.00793237, 0.00763203, 0.00734401, 0.00706777, 0.00680277,
178 0.00654854, 0.00630458, 0.00607047, 0.00584575, 0.00563004,
179 0.00542293, 0.00522405, 0.00503306, 0.00484961, 0.00467339,
180 0.00450408, 0.00434139, 0.00418504, 0.00403477, 0.00389032,
181 0.00375145, 0.00361793, 0.00348952, 0.00336603, 0.00324725,
182 0.00313299, 0.00302305, 0.00291727, 0.00281548, 0.0027175,
183 0.0026232, 0.00253242, 0.00244502, 0.00236086, 0.00227982,
184 0.00220176, 0.00212658, 0.00205416, 0.00198439, 0.00191716,
185 0.00185238, 0.00178995, 0.00172978, 0.00167178, 0.00161587,
186 0.00156196, 0.00150999, 0.00145986, 0.00141152, 0.0013649,
187 0.00131993, 0.00127655, 0.00123469, 0.00119431, 0.00115534,
188 0.00111773, 0.00108143, 0.0010464, 0.00101258, 0.000979926,
189 0.000948403, 0.000917964, 0.00088857, 0.000860183, 0.000832766,
190 0.000806283, 0.000780701, 0.000755986, 0.000732107, 0.000709035,
191 0.000686739, 0.000665192, 0.000644367, 0.000624238, 0.000604781,
192 0.000585971, 0.000567786, 0.000550203, 0.000533201, 0.000516759,
193 0.000500859, 0.00048548, 0.000470605, 0.000456216, 0.000442296,
194 0.000428828, 0.000415798, 0.00040319, 0.000390989, 0.000379182,
195 0.000367754, 0.000356693, 0.000345987, 0.000335622, 0.000325589,
196 0.000315874, 0.000306468, 0.000297361, 0.000288541, 0.000279999,
197 0.000271727, 0.000263715, 0.000255954, 0.000248435, 0.000241152,
198 0.000234096, 0.000227259, 0.000220634, 0.000214215, 0.000207994,
199 0.000201965, 0.000196122, 0.000190458, 0.000184968, 0.000179647,
200 0.000174487, 0.000169486, 0.000164636, 0.000159934, 0.000155374,
201 0.000150952, 0.000146664, 0.000142505, 0.000138471, 0.000134558,
202 0.000130763, 0.000127081, 0.000123509, 0.000120044, 0.000116681,
203 0.000113419, 0.000110253, 0.000107181, 0.000104199, 0.000101306,
204 9.84975e-05, 9.57716e-05, 9.31256e-05, 9.05571e-05, 8.80636e-05,
205 8.56428e-05, 8.32925e-05, 8.10105e-05, 7.87947e-05, 7.66431e-05,
206 7.45536e-05, 7.25245e-05, 7.05538e-05, 6.86398e-05, 6.67807e-05,
207 6.49749e-05, 6.32207e-05, 6.15167e-05, 5.98612e-05, 5.82529e-05,
208 5.66902e-05, 5.51719e-05, 5.36966e-05, 5.2263e-05, 5.08699e-05,
209 4.9516e-05, 4.82002e-05, 4.69214e-05, 4.56784e-05, 4.44702e-05,
210 4.32958e-05, 4.21541e-05, 4.10443e-05, 3.99653e-05, 3.89162e-05,
211 3.78963e-05, 3.69046e-05, 3.59403e-05, 3.50026e-05, 3.40907e-05,
212 3.32039e-05, 3.23415e-05, 3.15027e-05, 3.06868e-05, 2.98933e-05,
213 2.91214e-05, 2.83706e-05, 2.76401e-05, 2.69296e-05, 2.62382e-05,
214 2.55657e-05, 2.49112e-05, 2.42745e-05, 2.36549e-05, 2.3052e-05,
215 2.24653e-05, 2.18944e-05, 2.13387e-05, 2.07979e-05, 2.02716e-05,
216 1.97593e-05, 1.92606e-05, 1.87752e-05, 1.83027e-05, 1.78427e-05,
217 1.73949e-05, 1.6959e-05, 1.65345e-05, 1.61213e-05, 1.57189e-05,
218 1.53271e-05, 1.49456e-05, 1.45741e-05, 1.42123e-05, 1.38599e-05,
219 1.35168e-05, 1.31826e-05, 1.28571e-05, 1.25401e-05, 1.22313e-05,
220 1.19305e-05, 1.16374e-05, 1.1352e-05, 1.10739e-05, 1.0803e-05,
221 1.05391e-05, 1.02819e-05, 1.00314e-05, 9.78723e-06, 9.54934e-06,
222 9.31754e-06, 9.09166e-06, 8.87153e-06, 8.65701e-06, 8.44794e-06,
223 8.24419e-06, 8.04559e-06, 7.85203e-06, 7.66336e-06, 7.47946e-06,
224 7.3002e-06, 7.12545e-06, 6.9551e-06, 6.78902e-06, 6.62712e-06,
225 6.46927e-06, 6.31537e-06, 6.16532e-06, 6.01901e-06, 5.87635e-06,
226 5.73724e-06, 5.60159e-06, 5.46931e-06, 5.34031e-06, 5.2145e-06,
227 5.09181e-06, 4.97214e-06, 4.85543e-06, 4.7416e-06, 4.63057e-06,
228 4.52227e-06, 4.41662e-06, 4.31357e-06, 4.21304e-06, 4.11497e-06,
229 4.01929e-06, 3.92595e-06, 3.83488e-06, 3.74603e-06, 3.65934e-06,
230 3.57476e-06, 3.49222e-06, 3.41169e-06, 3.3331e-06, 3.25641e-06,
231 3.18157e-06};
232
233} // namespace Data
234} // namespace Kfactors
235} // namespace BSMPT
236#endif /* SRC_BARYO_CALCULATION_KFACTORS_GRID_KtildeInterpolation_H_ */
const std::vector< double > KtildeNormBoson_grid
KtildeNormBoson_grid Data points for the interpolation of the tilde{K} normalisations for the bosons.
Definition KtildeInterpolation.h:64
const std::size_t KtildeInterpolationSize
KtildeInterpolationSize number of Data points in the Interpolation of the tilde{K} normalisation.
Definition KtildeInterpolation.h:27
const std::vector< double > KtildeNormFermion_grid
KtildeNormFermion_grid Data points for the interpolation of the tilde{K} normalisations for the fermi...
Definition KtildeInterpolation.h:150
const std::vector< double > msquaredTsquared
msquaredTsquared Data points for m^2/T^2 used to calculate the tilde{K} normalisations
Definition KtildeInterpolation.h:32
This classes calculates the Bounce action of the potential with a set temperature.
Definition CalculateEtaInterface.h:24